
Process Framework Design Review
Shankar Rachakonda

vrachako@eos.hitc.com

17 April 1996

SR1-1706-CD-003-001 Day 3 Book B

SR1-2706-CD-003-001 Day 3 Book B

Process Framework (PF)
Overview

• Driving Requirements

• PF Software Design

• PF Context

• OO Design Models

• Design Drilldown

SR1-3706-CD-003-001 Day 3 Book B

PF Driving Requirements

• General Functional Description
- an extensible mechanism for ECS developed client and server applications to

transparently include ECS infrastructure features

• Key Requirements
- Encapsulate implementation details of ECS infrastructure services and

remove the need for programmers to rewrite common initialization code

- Ensure design and implementation consistency for all ECS Client and Server
Applications

• New Release B Features
- New functionality for SDPS and CSMS in Release B

- Under study for FOS

- Retrofitted into Release A development

• Evolutionary Features
- Provides a basis by which future extensions to infrastructure mechanisms

can be incorporated without adversely affecting the ECS developers

For more details please refer to 305-CD-028-002, Section 4.5.1

SR1-4706-CD-003-001 Day 3 Book B

Three step approach

Step 1: Identify all the common capabilities needed in ECS client/server
applications

Step 2: Classify ECS processes from a client/server perspective

Step 3: Allocate required capabilities at different levels of abstraction for
each process type

PF Software Design

SR1-5706-CD-003-001 Day 3 Book B

Common Capabilities Required
by ECS Processes

• Ability to initialize the process application and infrastructure in a
consistent way and provide some basic process information

• Interface to Mode Management and Error-Event Handling

• Support for Life Cycle Services

• Interface to Asynchronous Message Passing, Server Request
Framework and to common facilities such as batch FTP

• Encapsulation of OODCE Naming/Directory and Security
parameters setup

SR1-6706-CD-003-001 Day 3 Book B

ECS Process Classification

PF Software Design

Process

Client Server

Unmanaged Server Managed ServerGateway Client ECS Client

Document Reference:
305-CD-028-002,
Fig. 4.5.1.1-1

SR1-7706-CD-003-001 Day 3 Book B

Operating Context of ECS
Processes

ECS Host

ECS Host

MSS Agent

Management
Log

Managed
Server

Process 1

Unmanaged
Server

Process 1.1

Unmanaged
Server

Process 1.2

Application
Log Client

Log

ECS Client
Process

A

B

C

External Workstation

Client
Log

Client
Process

D

MSS Management
Log

Application
Log

G
a
t
e
w
a
y

Document Reference:305-CD-028-002,Fig. 4.5.1.2-1

SR1-8706-CD-003-001 Day 3 Book B

PF Software Design
Simplified Object Model

MSS Management
Framework

MyClientProc

EcPfClient

PfProcessEvent()

COTS

GSO
theServer

SRF

AsyncMsg

EcPfUnmanagedServer

MyManagedServerProc

MyUnmanagedServerProc

is created by

EcPfGenServer

//Attributes for naming preferences
// and other OODCE param.s
//here

PfGenServerStart()
PfShutdown()=0
PfSuspend()
PfResume()
PfGetSRFPtr()
PfRegisterObject()
PfUnRegisterObject()
//Public methods for Async. MP,
//batch FTP, etc.

EcPfManagedServer

myMSSMgrPtr : EcAgManager

PfRegisterMetric()

PfShutdown()

PfProcessEvent()

PfExecShutdown()

PfStart()

PfSetShutdownSec()

PfGetShutdownSec()
PfShutdownMyself()

PfInit()

providesEcPfConfigFile

EcPfGenProcess

// Attributes defining
// basic process information
// and Mode Mgmt. param.s

// Access methods for
// process variables
PfGetMode()

PfGetConfigFileName()
PfProcessEvent()=0

SR1-9706-CD-003-001 Day 3 Book B

Class Descriptions

EcPfGenProcess

EcPfGenServer

EcPfManagedServer

This class represents a generic process. It has all the
common functionalities for all the processes. It is
mainly a container of attributes needed by every
process. It obtains attribute values from the
configuration file or command line parameters.

This class provides basic framework for server
processes. It encapsulates DCEServer capabilities to
provide OODCE naming/directory set up, and
performs initialization of other services such as FTP,
Message Passing, Security.

This class provides a basic framework for managed
server processes. All ECS server applications are
managed server processes. This class provides
an interface with MSS subagent, and through which,
ECS application can communicate with MSS. This
class also provides interface with Event Handling, which
allows consistent Error-Event logging for all ECS server
application.

SR1-10706-CD-003-001 Day 3 Book B

Class Descriptions

EcPfClient

EcPfUnManagedServer

MyManagedServerProc

MyUnManagedServerProc

MyClientProc

This class is a framework class for unmanaged server
processes. Unmanaged server processes has all
the functionalities of a managed server processes,
except it is not under management of MSS.

Defines the framework for client processes.

This class is implemented by programmers to inherit
managed server process functionalities. This class
inherits from EcPfManagedServer, and is application
specific. Application programmers are required to
provide implementation of application shutdown
method of this class.

This class is implemented by programmers to inherit
unmanaged server process functionality.

This class is implemented by programmers to inherit
client process functionality

SR1-11706-CD-003-001 Day 3 Book B

Configuration File for PF

• Server process options are indicated in an orderly (parsable) fashion
in a configuration file - like the .Xdefaults in Motif

• This file can be different for each instantiation of a server executable

• Code should not be recompiled to run with different options (ex:
different modes)

• Several options have been identified

• Other options as identified by subsystems will be incorporated

SR1-12706-CD-003-001 Day 3 Book B

Configuration file Syntax/
Options

[PF]
FtpThreads = 5 // simultaneous ftp threads to do batch processing
ServerName = “myname” // name of the server - one name per server
GroupName = “groupname” // group name
ProfileName = “profilename” // profile name
Protocol = “tcp” // underlying transport protocol
Site = “ ” // site
Async = “True” // need asynchronous messaging ?
AsyncPstFile = “filename” // async message persistence filename
KeyFile = “keyfilename” // server identity (security) keytab file
HostPolicy = “one” // one server per host

Application specific information can also be included

A template of the configuration file will be provided in a central place
so application programmer can start with it (copy and provide values)

SR1-13706-CD-003-001 Day 3 Book B

Configuration File Syntax Options

Precedence for setting options

(Listed below in the order of precedence)

1. Access functions provided by the framework

2. Command line arguments

3. Configuration File entries

SR1-14706-CD-003-001 Day 3 Book B

Object Model

The following object model will be reviewed:

Model Name Document Reference Section

PF Object Model 305-CD-028-002 4.5.1.3

SR1-15706-CD-003-001 Day 3 Book B

Dynamic Model

The following event traces will be reviewed:

Event Trace Name Document Reference Section

Application Start Up 305-CD-028-002 4.5.1.5.1

Application Shutdown 305-CD-028-002 4.5.1.5.2

Event Logging 305-CD-028-002 4.5.1.5.4

SR1-16706-CD-003-001 Day 3 Book B

Event Traces

Application Start Up

Scenario
• This scenario describes the start up of a generic server application.

Functional Description
• MSS sub-agent fires the script for starting the ECS server application.

• Server application main instantiates a MyManagedServerProc object, and reads
from a configuration file and command line arguments to set attributes needed
for the process execution.

• Application main calls MyManagedServerProc->PfInit() to perform all DCE related
initialization (and optionally SRF, message passing, and FTP initialization) for the
process. EcAgManager object is created at this time.

• Application performs normal server setup such as creating server manager
objects, registering objects with GSO, and registering metrics with MSS.

• Application main calls MyManagedServerProc->PfStart() to start MSS monitoring,
and listen to client requests.

Assumptions/ Preconditions
• The application is available on an ECS host.

SR1-17706-CD-003-001 Day 3 Book B

Startup Scenario

MSS
SubAgent

Application
main

MyMngd
ServerProc

EcAg
Manager

GSO
EcPf

ConfigFile

run a server app.

Read the configuration file

Application
Specific

constructor
behavior

EcPfMngd
Server

StartMonitoring

theServer->Listen()

PfRegisterMetric

 PfStart()

start()

Parse the command line arguments

PfInit() Initialize DCE related func�tionalities

ctor ctor

Initialize
instantiates

PfRegisterObject

Service I/F

Normal processing occurs here

FTP, MP, or SRF set up

SR1-18706-CD-003-001 Day 3 Book B

Event Traces

Application Shutdown

Scenario
• Shutdown of a generic server application at the request of MSS

Functional Description
• MSS sub-agent, EcAgManager, calls PfGetShutdownSec() to obtain the number

of seconds the application needs to perform shutdown.

• After the shutdown seconds is obtained, the MSS sub-agent then calls
PfExecShutdown() to shutdown the server process.

• PfExecShutdown() will first call theServer->Shutdown() to stop accepting client
requests, and return from listen.

• The application specific shutdown method (PfShutdown()) is called to perform
application specific shutdown. If the application does not shutdown within the
indicated time frame, the operator will be given an opportunity to kill the
application or let it continue to operate.

Assumptions/ Preconditions
• The application process is running.

SR1-19706-CD-003-001 Day 3 Book B

Application Shutdown

Normal processing occurs here

MSS
SubAgent

EcPfMngd
Server

EcAg
Manager

GSO

Shutdown request

PfExecShutdown(level)

 theServer->Shutdown()

MyMngd
ServerProc

PfShutdown(level)

Application
main

PfGetShutdownSec()

Return from Listen

Control return to main

Destructor
Destructor

Destructor

SR1-20706-CD-003-001 Day 3 Book B

Event Traces

Event Logging

Scenario
• For logging errors/events

Functional Description
• On detecting an event the application creates an instance of the EcAgEvent

class and uses it to describe the event.

• It then passes the event object, along with the log type, to the EcAgManager to
be logged using the method ProcessEvent.

Assumptions/ Preconditions
• Logging has been initialized

SR1-21706-CD-003-001 Day 3 Book B

Event Logging

MSS
SubAgent

EcAg
Manager

theEvent = new EcAgEvent
Event

detected

EcAg
Event

Management
Log

 fill w/ event info

 PfProcessEvent(theEvent)

passes

stores

EcPfMngd
Server

MyMngd
ServerProc

ProcessEvent(theEvent)

SR1-22706-CD-003-001 Day 3 Book B

ECS Process Framework

Development Recipe

Step 1: Develop a configuration file

Step 2: Develop Distributed Objects

Step 3: Develop the appropriate derived class

Step 4: Develop the Application Main

SR1-23706-CD-003-001 Day 3 Book B

Managed Server Process

Development Example

GSO

MyServerMain

DCEObj DCEInterfaceMgr

Widget_1_0_ABS

Widget_1_0_Mgr

widget() MyManagedServerProc

MyServerMain is a
module containing the
main program for a
managed server
application

Server Framework

uses

SR1-24706-CD-003-001 Day 3 Book B

Class MyManagedServerProc: public EcPfManagedServer
{

// My Attributes
 ...
// Constructor, Destructor, operations
....
Start(...); // One development option
// Overriding methods
PfShutdown(...); // Mandatory
PfGetShutdownSec(...); // Special Case
...

}

MyManagedServerProc Class
Definition

SR1-25706-CD-003-001 Day 3 Book B

MyManagedServerProc::MyManagedServerProc(int *argc, char **argv)
 : EcPfManagedServer(argc, argv)

{
// Application related programming
// Process application-specific command line arguments
...
// Other setup functions
...
// Get process data
PerhapsIneedThis = PfGetMode();
PerhapsIneedAlsoThis = PfGetProfileName();
...
// Set my preferred protocol
PfSetProtocolPolicy(protocol);
...

}

Class MyManagedServerProc
Development

Constructor

SR1-26706-CD-003-001 Day 3 Book B

Main Program for PF

//extern ecsserver

MyManagedServerProc* ecsServer;

int main (int argc, char** argv)

{

.....

//Instantiates the MyManagedServerProc, this will in turn execute //
constructors of EcPfManagedServer, EcPfGenServer and EcPfGenProcess. //
Command line arguments are being passed, which will be used later by //
EcPfGenServer and EcPfGenProcess to obtain class attribute values.

ecsServer = new MyManagedServerProc (argc, argv, &st);

// check return status here

// Call PfInit to perform initialization.

PfInit ();

Start ();

.......

}

SR1-27706-CD-003-001 Day 3 Book B

Construct EcPfManagedServerObject

// This constructor will execute the constructor of EcPfGenServer,

// which in turn will the execute constructor of EcPfGenProcess.

EcPfManagedServer::EcPfManagedServer(int argc, char** argv,
 EcUtStatus st)

 :EcPfGenServer(argc, argv, st)

{

// Initialize the pointer to the EcAgManager object

// Check return status of EcPfGenServer Constructor

// Any application specific set up, such as parsing application specific

// command line arguments, calling Get/Set methods, and other set up

// process can be done here.

}

Start Up Drill Down

SR1-28706-CD-003-001 Day 3 Book B

Start Up Drill Down

 Read the config file and parse the command line arg
// This constructor calls the constructor for the base class DCEServer, so

// that the global object pointer theServer gets set to point to the Process

// Framework Server Object (ecsServer) when it is constructed.

EcPfGenServer::EcPfGenServer(int argc, char** argv, EcUtStatus st)
 : EcPfGenProcess(argc, argv,st), DCEServer()

{
// Initialize class attributes

// Private function PfSetAttrFromConfigFile() is called to read class //
attribute values from Configuration File. Name of the Configuration File //
is provided from the command line arguments.

status = PfSetAttrFromConfigFile();

// Call PfSetAttrFromArgv(argc, argv) function to parse the command line //
arguments and overwrite, or set class attributes.

status = PfSetAttrFromArgv(argc, argv);

.......

}

SR1-29706-CD-003-001 Day 3 Book B

Start Up Drill Down

 PfInit()
// PfInit is called by application main(), to initialize the managed server
// process. In this method, the initialization method of EcPfGenServer
// (PfGenServerInit()) is invoked. The EcAgManager object is instantiated,
// and registered with GSO.
EcUtStatus EcPfManagedServer::PfInit()
{

// call PfGenServerInit(). It will do any combination of the following:
// - DCE related initialization;
// - Initializes Message Passing and SRF
// - Initializes FTP process
 status = PfGenServerInit();
// Obtain execution name, application ID, and program ID from Get methods
// of EcPfGenProcess class. These values will be used to construct
// EcAgManager object later
 execution_name = PfGetExecName();
 AppID = PfGetAppID();
 ProgID = PfGetProgramID();
 // Instantiates EcAgManager object. EcAgManager is an distributed object.
 // ECS application uses the server side of EcAgManager to communicate with
 // the MSS subagent.
 myMSSMgrPtr = new EcAgManager(execution_name,objUuid, AppID, ProgID):
....
}

SR1-30706-CD-003-001 Day 3 Book B

Start Up Drill Down
Start()
// This method will be provided by the application. This method

// will contain whatever needs to set up the server application process.

EcUtStatus MyManagedServerProc::Start()

{

// Create server manager objects

sleeper_1_0_Mgr SleeperObj(objUuid);

// If security is used, check and create ACLs and ACL databases

DCEAclSchema *theSchema = EcXSeSecurity->CreateAclSchema(status, 8)

 ...
 status = PfRegisterObject(SleeperObj, true); //Register objects with GSO

 ...
status = PfRegisterMetric(MgmtLevel,MetricObjPtr);//Register Metric with MSS

 ...
// If needed, create FTP and Message Passing processes here

 ...
//Finally, tell MSS to start monitoring this process and start listening

status = PfStart(); // This must be the last instruction

return status;

}

SR1-31706-CD-003-001 Day 3 Book B

Shutdown Drill Down

PfShutdown(level)

EcUtStatus EcPfManagedServer::PfShutdown(EcTAgMgmtLevel ShutdownLevel,
 Int ShutdownReason,
 Int gracefulflag)

{

 // This method will be called by PF upon receiving the shutdown request

 // This method will do whatever needs to be done to shutdown the
 // application gracefully, such as notify client, log off databases,etc.

 // PF will take care of DCE cleanup.

 // If the application does not shutdown within the indicated time frame,

 // (indicated from PfGetShutdownSec()), the operator will be given an
 //opportunity to kill the application or let it continue to operate.
 ...

}

SR1-32706-CD-003-001 Day 3 Book B

Shutdown Drill Down

PfGetShutdownSec()
// This method needs to be overridden by the application to

// provide an estimation of shutdown time the application needs.

// If this implementation is not provided, a default number of second

// will be provided by the process framework.

int MyManagedServerProc::PfGetShutdownSec(EcTAgMgmtLevel level)

{

 int numOfSecs;

// Calculate estimated shutdown second

 numOfSecs = MyCalculateShutdown();

 return (numOfSecs);

}

SR1-33706-CD-003-001 Day 3 Book B

Shutdown Drill Down

PfExecShutdown(level)

// This method is called by the MSS sub-agent requesting a shutdown
// be performed. This method in turn calls theServer->Shutdown() to
// shutdown the server process.

EcUtStatus EcPfManagedServer::PfExecShutdown(EcTAgMgmtLevel level
 int gracefulFlag)
{

 Shutdown();

// theServer->Shutdown(), at this point, server will
// return from listen, PfShutdown() will be called
// to perform application specific shutdown.
 ...
}

SR1-34706-CD-003-001 Day 3 Book B

Event Logging Code

Widget_1_0_Mgr::Widget()
{

...
// At this point I decide to log an event (option 1)
theEvent = new EcAgEvent(p1, p2, p3, p4);
ecsServer->PfProcessEvent(theEvent);

// New implementation (Option 2)
theEvent = new EcLgErrorMsg(error, class, severity);
ecsServer->PfProcessErrorMsg(theEvent);
...

}

SR1-35706-CD-003-001 Day 3 Book B

Getting Values

Server Application (Code)
Other examples

...

// At this point I need some values
myVariable = PfGetMode();
...
myVariable = PfGetPID();
...
myVariable = PfGetAppID();
...
myVariable = PfGetMajorVersion();
...

SR1-36706-CD-003-001 Day 3 Book B

PF Design Issues

1. Configuration File
Work-off plan

- Revisit configuration file options

- Coordinate with Rel A development

- Target date for completion 06/01/96

2. SRF Client Integration

Work-off plan
- Better understand the needs of SRF client

- Specialize a new lightweight server class from the Generic
Server Class

- Target date for completion 06/01/96

